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We present and compare different numerical schemes for the integration of the variational equations of
autonomous Hamiltonian systems whose kinetic energy is quadratic in the generalized momenta and whose
potential is a function of the generalized positions. We apply these techniques to Hamiltonian systems of
various degrees of freedom and investigate their efficiency in accurately reproducing well-known properties of
chaos indicators such as the Lyapunov characteristic exponents and the generalized alignment indices. We find
that the best numerical performance is exhibited by the “tangent map method,” a scheme based on symplectic
integration techniques which proves to be optimal in speed and accuracy. According to this method, a sym-
plectic integrator is used to approximate the solution of the Hamilton equations of motion by the repeated
action of a symplectic map S, while the corresponding tangent map TS is used for the integration of the
variational equations. A simple and systematic technique to construct TS is also presented.
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I. INTRODUCTION

Numerical integration is very often the only available tool
for investigating the properties of nonlinear dynamical sys-
tems. Different numerical techniques �1,2� have been devel-
oped over the years which permit the fast and accurate time
evolution of orbits in such systems.

Of particular interest are the so-called symplectic integra-
tors which are numerical methods specifically aimed at ad-
vancing in time the solution of Hamiltonian systems with the
aid of symplectic maps �see, for example, Chap. VI of �2�,
�3� and references therein�. Another challenging numerical
task in conservative Hamiltonian systems is to discriminate
between order and chaos. This distinction is a delicate issue
because regular and chaotic orbits are distributed throughout
phase space in very complicated ways. In order to address
the problem several methods have been developed, which
can be divided into two major categories: the ones based on
the study of the evolution of deviation vectors from a given
orbit, like the computation of the maximal Lyapunov charac-
teristic exponent �mLCE� �1 �4�, and those relying on the
analysis of the particular orbit itself, like the frequency map
analysis of Laskar �5�.

Other chaos detection methods, belonging to the same
category with the evaluation of the mLCE, are the fast
Lyapunov indicator �6� and its variants �7�, the smaller align-
ment index �SALI� �8� and its generalization, the so-called
generalized alignment index �GALI� �9,10�, and the mean
exponential growth of nearby orbits �11�. The computation of
these indicators requires the numerical integration of the so-
called variational equations, which govern the time evolu-
tion of deviation vectors.

The scope of this paper is to present, analyze, and com-
pare different numerical methods for the integration of the
variational equations. In our study we consider methods
based on symplectic and nonsymplectic integration tech-
niques. The integration of the variational equations by non-
symplectic methods is straightforward since one simply has
to integrate these equations simultaneously with the equa-

tions of motion. This approach requires, in general, more
CPU time than schemes based on symplectic integration
techniques for the same order of accuracy and integration
time step. For this reason we focus our attention on methods
based on symplectic schemes, explaining in detail their the-
oretical foundation and applying them to Hamiltonian sys-
tems of different numbers of degrees of freedom.

The numerical solution of the variational equations ob-
tained by the various integration schemes studied are used
for the computation of the spectrum of the Lyapunov char-
acteristic exponents �LCEs� and the GALIs. We chose to
compute these two chaos indicators among the indices based
on the evolution of deviation vectors, because the computa-
tion of the mLCE is the elder and most commonly employed
chaos detection technique, while the computation of the
whole spectrum of LCEs and GALIs requires the evolution
of more than one deviation vector and thus is strongly influ-
enced by inaccuracies of the integration procedure. We in-
vestigate the numerical efficiency of the different integration
methods by comparing the CPU times they require for the
computation of the LCEs and the GALIs, as well as their
accuracy in reproducing well-known properties of these
chaos indicators. In particular, we check whether the set of
computed LCEs consists of pairs of values having opposite
signs and if the time evolution of GALIs follows specific
theoretically predicted laws.

The paper is organized as follows: after introducing the
concept of variational equations in the next section, we de-
scribe in Secs. III and IV the LCEs and the GALIs, respec-
tively, which are the two chaos indicators we use in our
study. Then, in Sec. V we give the basic properties of sym-
plectic integrators. Section VI is devoted to the detailed de-
scription of several numerical schemes for the integration of
the variational equations of Hamiltonian systems. Applica-
tions of these schemes to regular and chaotic orbits of sys-
tems with two or more degrees of freedom are presented in
Sec. VII, where also the efficiency of each technique is dis-
cussed. Finally, in Sec. VIII, we summarize the results and
present our conclusions, while in the Appendix the explicit
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expressions of the various integration methods for the
Hénon-Heiles system are given.

II. VARIATIONAL EQUATIONS

Let us consider an autonomous Hamiltonian system of N
degrees of freedom �ND� having a Hamiltonian function

H�q1,q2, . . . ,qN,p1,p2, . . . ,pN� = h = const, �1�

where qi and pi �i=1,2 , . . . ,N� are the generalized coordi-
nates and conjugate momenta, respectively. An orbit in the
2N-dimensional phase space S of this system is defined by
the vector

x��t� = „q1�t�,q2�t�, . . . ,qN�t�,p1�t�,p2�t�, . . . ,pN�t�… , �2�

with xi=qi, xi+N= pi, and i=1,2 , . . . ,N. The time evolution of
this orbit is governed by the Hamilton equations of motion,
which in matrix form are given by

x�̇ = � �H

�p�
−

�H

�q�
�T

= J2N · DH, �3�

with q� = (q1�t� ,q2�t� , . . . ,qN�t�), p� = (p1�t� , p2�t� , . . . , pN�t�),
and

DH = � �H

�q1

�H

�q2
¯

�H

�qN

�H

�p1

�H

�p2
¯

�H

�pN
�T

,

with �T� denoting the transpose matrix. Matrix J2N has the
following block form:

J2N = � 0N IN

− IN 0N
� ,

with IN being the N�N identity matrix and 0N being the
N�N matrix with all its elements equal to zero.

An initial deviation vector w� �0�= (�x1�0� ,
�x2�0� , . . . ,�x2N�0�) from an orbit x��t� evolves in the tangent
space Tx�S of S according to the so-called variational equa-
tions

w�̇ = �J2N · DH
2
„x��t�…� · w� ¬ A�t� · w� , �4�

with DH
2 (x��t�) being the Hessian matrix of Hamiltonian �1�

calculated on the reference orbit x��t�, i.e.,

DH
2
„x��t�…ij =� �2H

�xi � xj
�

x��t�
, i, j = 1,2, . . . ,2N .

Equations �4� are a set of linear differential equations with
respect to w� , having time-dependent coefficients since matrix
A�t� depends on the particular reference orbit, which is a
function of time t.

In the present paper we consider autonomous Hamilto-
nians of the form

H�q� ,p�� =
1

2�
i=1

N

pi
2 + V�q�� , �5�

with V�q�� being the potential function. The Hamilton equa-
tions of motion �3� become

x�̇ = �q�̇

p�̇
� = 	 p�

−
�V�q��

�q�

 , �6�

while the variational equations �4� of this system take the
form

w�̇ = 	�q�̇

�p�̇

 = A�t� · w� = 	 0N IN

− DV
2
„q��t�… 0N 
 · 	�q�

�p� 
⇒

�7�

�q�̇ = �p� , �p�̇ = − DV
2
„q��t�…�q� ,

with �q� = (�q1�t� ,�q2�t� , . . . ,�qN�t�), �p� = (�p1�t� ,�p2�t� . . . ,
�pN�t�), and

DV
2
„q��t�… jk =� �2V�q��

�qj � qk
�

q��t�
, j,k = 1,2, . . . ,N . �8�

Thus, the tangent dynamics of Hamiltonian �5� is represented
by the time-dependent Hamiltonian function

HV��q� ,�p� ;t� =
1

2�
i=1

N

�pi
2 +

1

2�
j,k

N

DV
2
„q��t�… jk�qj�qk, �9�

which we call the tangent dynamics Hamiltonian �TDH� and
whose equations of motion are exactly the variational equa-
tions �7�.

III. LYAPUNOV CHARACTERISTIC EXPONENTS

The LCEs are asymptotic measures characterizing the av-
erage rate of growth �or shrinking� of small perturbations to
the solutions of a dynamical system. Their concept was in-
troduced by Lyapunov when studying the stability of nonsta-
tionary solutions of ordinary differential equations �12� and
has been widely employed in studying dynamical systems
since then. A detailed review of the theory of the LCEs, as
well as of the numerical techniques developed for their com-
putation can be found in �4�.

The theory of LCEs was applied to characterize chaotic
orbits by Oseledec �13�, while the connection between LCEs
and exponential divergence of nearby orbits was given in
�14,15�. For a chaotic orbit at least one LCE is positive,
implying exponential divergence of nearby orbits, while in
the case of regular orbits all LCEs are zero or negative.
Therefore, the computation of the mLCE �1 is sufficient for
determining the nature of an orbit, because �1�0 guarantees
that the orbit is chaotic.

The mLCE is computed as the limit for t→� of the quan-
tity

X1�t� =
1

t
ln

�w� �t��
�w� �0��

, �10�

often called finite-time mLCE, where w� �0� and w� �t� are de-
viation vectors from a given orbit, at times t=0 and t�0,
respectively, and � · � denotes the norm of a vector. So, we
have
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�1 = lim
t→�

X1�t� . �11�

If the energy surface defined by Eq. �1� is compact, it has
been shown that this limit is finite, independent of the choice
of the metric for the phase space, and converges to �1 for
almost all initial vectors w� �0� �13,16,17�. X1�t� tends to zero
in the case of regular orbits following a power law �14�,

X1�t� � t−1, �12�

while it tends to nonzero values in the case of chaotic orbits.
An ND Hamiltonian system has 2N �possibly nondistinct�

LCEs, which are ordered as �1��2� ¯ ��2N. In �18� a
theorem was formulated, which led directly to the develop-
ment of a numerical technique for the computation of all
LCEs, based on the time evolution of many deviation vec-
tors, kept linearly independent through a Gram-Schmidt or-
thonormalization procedure. The theoretical framework, as
well as the corresponding numerical method for the compu-
tation of all LCEs �usually called the standard method�, was
given in �16,17�. According to this method all other LCEs �2,
�3, etc., apart from the mLCE obtained from Eq. �11�, are
computed as the limits for t→� of some appropriate quan-
tities X2�t�, X3�t�, etc., which are called the finite-time LCEs
�see �4,17� for more details�. We note that throughout the
present paper, whenever we need to compute the values of
the LCEs, we apply the discrete QR-decomposition tech-
nique ��19�, Sec. 2.10�, which is a variation of the standard
method �see Sec. 6.3 of �4� for more details�.

It has been shown in �16� that in the case of an autono-
mous Hamiltonian flow, the set of LCEs consists of pairs of
values having opposite signs,

�i = − �2N−i+1, i = 1,2, . . . ,N . �13�

In addition, since the Hamiltonian function is an integral of
motion, at least two LCEs vanish, i.e.,

�N = �N+1 = 0, �14�

while the presence of any additional independent integral of
motion leads to the vanishing of another pair of LCEs.

IV. GENERALIZED ALIGNMENT INDEX

The GALI is an efficient chaos detection technique intro-
duced in �9� as a generalization of a similar indicator called
the SALI �8�. The method has been applied successfully for
the discrimination between regular and chaotic motions, as
well as for the detection of regular motion on low-
dimensional tori to different dynamical systems �10,20�.

The GALI of order k �Gk� is determined through the evo-
lution of 2	k	2N initially linearly independent deviation
vectors w� i�0� �i=1,2 , . . . ,k�. The time evolution of each de-
viation vector is governed by the variational equations �7�.
Each evolved deviation vector w� i�t� is normalized from time
to time, having its norm equal to 1, in order to avoid over-
flow problems, but its direction is left intact. Then, according
to �9�, Gk is defined to be the volume of the k-parallelogram
having as edges the k unitary deviation vectors ŵi�t�
�i=1,2 , . . . ,k�. This volume is equal to the norm of the

wedge product of these vectors, and Gk is given by

Gk�t� = �ŵ1�t� ∧ ŵ2�t� ∧ ¯ ∧ ŵk�t�� . �15�

From this definition it is evident that if at least two of the
deviation vectors become linearly dependent, the wedge
product in Eq. �15� becomes zero and Gk vanishes.

Expanding the wedge product �15� into a sum of determi-
nants and studying the asymptotic behavior of those who
vary the slowest in time, it is possible to show analytically
the following �9�: in the case of a chaotic orbit all deviation
vectors tend to become linearly dependent, aligning in the
direction defined by the mLCE, and Gk tends to zero expo-
nentially following the law

Gk�t� � e−��
1−
2�+�
1−
3�+¯+�
1−
k��t, �16�

where 
1 , . . . ,
k are approximations of the first k largest
Lyapunov exponents. On the other hand, in the case of regu-
lar motion on an N-dimensional torus, all deviation vectors
tend to fall on the N-dimensional tangent space of this torus.
Thus, if we start with k	N general deviation vectors they
will remain linearly independent on the N-dimensional tan-
gent space of the torus, since there is no particular reason for
them to become aligned. As a consequence Gk is different
from zero and remains practically constant for k	N. On the
other hand, Gk tends to zero for k�N since some deviation
vectors will eventually become linearly dependent, following
a particular power law which depends on the dimensionality
N of the torus and the number k of deviation vectors. The
behavior of Gk for regular orbits lying on N-dimensional tori
is given by

Gk�t� � �const if 2 	 k 	 N

1

t2�k−N� if N � k 	 2N . �17�

If the regular orbit lies on a low-dimensional torus, i.e., an
s-dimensional torus with 2	s	N, then Gk remains practi-
cally constant and different from zero for k	s and tends to
zero for k�s following particular power laws �see �10� for
more details�.

In order to compute the value of Gk we consider the
2N�k matrix W�t� having as columns the coordinates wji�t�
of the unitary deviation vectors ŵi�t� �where i=1,2 , . . . ,k
and j=1,2 , . . . ,2N�, with respect to the usual ortho-
normal basis ê1= �1,0 ,0 , . . . ,0� , ê2= �0,1 ,0 , . . . ,0� , . . . , ê2N
= �0,0 ,0 , . . . ,1� of the 2N-dimensional tangent space Tx�S
and perform the singular value decomposition of this matrix.
Then, as it was shown in �10�, Gk is equal to the product of
the singular values zi �i=1,2 , . . . ,k� of matrix W�t�, i.e.,

Gk�t� = �
i=1

k

zi�t� . �18�

V. SYMPLECTIC INTEGRATORS

Let us discuss in some detail how we can integrate the
equations of motion �3� of a general Hamiltonian �1� by a
symplectic integration scheme, focusing our attention on a
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particular family of integrators presented in �21�. Defining
the Poisson bracket of functions f�q� , p�� and g�q� , p�� by �22�

�f ,g� = �
l=1

N � � f

�ql

�g

�pl
−

� f

�pl

�g

�ql
� , �19�

the Hamilton equations of motion �3� take the form

dx�

dt
= �x�,H� = LHx� , �20�

where LH is the differential operator defined by L�f = �f ,��.
The solution of Eq. �20�, for initial conditions x��0�=x�0, is
formally written as

x��t� = �
n�0

tn

n!
LH

n x�0 = etLHx�0. �21�

Let us assume that the Hamiltonian function H can be split
into two integrable parts as H=A+B. A symplectic scheme
for integrating Eq. �20� from time t to time t+� consists of
approximating, in a symplectic way, the operator e�LH

=e��LA+LB� by an integrator of j steps involving products of
operators eci�LA and edi�LB �i=1,2 , . . . , j�, which are exact in-
tegrations over times ci� and di� of the integrable Hamilto-
nians A and B. The constants ci and di, which in general can
be positive or negative, are chosen to increase the order of
the remainder of this approximation. So e�LA and e�LB are
actually symplectic maps acting on the coordinate vector x�.
Therefore, the integration of Eq. �20� over one time step �,
which evolves the initial coordinate vector x��t� to its final
state x��t+��, is represented by the action on x��t� of a sym-
plectic map S produced by the composition of products of
eci�LA and edi�LB. In this context several symplectic integrators
of different orders have been developed by various research-
ers �23,24�.

In �21� the families of SBAB �and SABA� symplectic
integrators, which involve only forward �positive� integration
steps were introduced. These integrators were adapted for the
integration of perturbed Hamiltonians of the form H=A
+B, where both A and B are integrable and  is a small
parameter. A particular integrator SBABn �SBn�, or SABAn
�SAn�, involves n steps, i.e., n applications of products of
eci�LA and edi�LB, and is of order O��2n+�22� with respect
to the integration step �. This means that by using these
integrators, we are actually approximating the dynamical be-
havior of the real Hamiltonian A+B by a Hamiltonian H�

=A+B+O��2n+�22�, i.e., we introduce an error term of
the order �2n+�22.

The accuracy of the SBn �SAn� integrator can be improved
when the commutator term C={B , �B ,A�} �25� leads to an
integrable system, as in the common situation of A being
quadratic in momenta p� and B depending only on positions
q� . In this case, two corrector terms of small backward �nega-
tive� steps can be added to the integrator SBn,

SBn
c = e−�32�g/2�LC�SBn�e−�32�g/2�LC. �22�

A similar expression is valid also for SAn. The value of con-
stant g is chosen in order to eliminate the �22 dependence of
the remainder which becomes of order O��2n+�42�. The

SBAB �SABA� integrators have already proved to be very
efficient for the numerical study of different dynamical sys-
tems �21,26,27�. We note that several authors have used
commutators for improving the efficiency of symplectic in-
tegrators �e.g., �28,29��.

Setting =1 we can apply the SBAB �SABA� integration
schemes for the integration of Hamiltonian �5� since this
Hamiltonian can be written as H=A+B, with

A�p�� =
1

2�
i=1

N

pi
2, B�q�� = V�q�� , �23�

being both integrable. The maps e�LA and e�LB, which propa-
gate the set of initial conditions �q� , p�� at time t to their final
values �q�� , p��� at time t+�, for the Hamiltonian functions
A�p�� and B�q�� �Eq. �23�� are

e�LA:�q�� = q� + p��

p�� = p� ,
� �24�

e�LB:�q�� = q�

p�� = p� −
�V�q��

�q�
� , �25�

respectively. For Hamiltonian �5� the corrector term is given
by

C = ˆB,�B,A�‰ = �
i=1

N � �V�q��
�qi�

�2

, �26�

which is a function of only the coordinates q� and thus easily
integrated as

e�LC:�q�� = q�

p�� = p� −
�C�q��

�q�
� . �27�

In Appendix, Sec. 1 we give the explicit formulas of Eqs.
�24�, �25�, and �27� for the Hénon-Heiles system �54�.

VI. NUMERICAL INTEGRATION OF VARIATIONAL
EQUATIONS

In this section we present several numerical schemes for
the integration of the variational equations, considering both
nonsymplectic techniques and methods based on symplectic
integrators. The latter schemes are quite general and any
symplectic integrator can be used for their implementation.
In our study we consider an efficient fourth-order symplectic
integrator, SB2

c �21,28�, which has an extra degree of com-
plexity with respect to integrators composed of products of
maps e�LA, and e�LB, since it requires the application of the
corrector term C �26�.

A. Nonsymplectic schemes

In order to follow the evolution of a deviation vector, the
variational equations �7� have to be integrated simulta-
neously with the Hamilton equations of motion �6�, since
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matrix DV
2�t� depends on the particular reference orbit x��t�,

which is a solution of Eq. �6�. Any nonsymplectic numerical
integration algorithm can be used for the integration of the
whole set of equations �6� and �7�.

In our study we use the DOP853 integration method which
has been proven to be very efficient. The DOP853 integrator
�30� is an explicit nonsymplectic Runge-Kutta integration
scheme of order 8, based on the method of Dormand and
Price �see �1�, Sect. II.5�. Two free parameters, � and �, are
used to control the numerical performance of the method.
The first one defines the time span between two successive
outputs of the computed solution. After each step of length �
the values of LCEs �GALIs� are computed and the deviation
vectors are orthonormalized �normalized�. For the duration
of each step �, the integrator adjusts its own internal time
step, so that the local one-step error is kept smaller than the
user-defined threshold value �. For DOP853 the estimation of
this local error and the step size control is based on embed-
ded formulas of orders 5 and 3.

B. Integration of the tangent dynamics Hamiltonian

Another approach to compute the evolution of deviation
vectors is to initially integrate the Hamilton equations of
motion �6�, in order to obtain the time evolution of the ref-
erence orbit x��t�, and then to use this numerically known
solution for solving the equations of motion of the TDH �9�,
which are actually the variational equations �7�. In practice
one numerically solves the Hamilton equations of motion �6�
by any �symplectic or nonsymplectic� integration scheme to
obtain the values x��ti� at ti= i�t �i=0,1 ,2 , . . .�, where �t is
the integration time step of these orbits. Of course, the accu-
racy of the particular numerical scheme used for the con-
struction of the time series x��ti� will affect the quality of the
numerical solution of the variational equations, regardless of
the numerical scheme used for solving them. Having com-
puted the values x��ti� different methods can be applied for
approximating the solution of the variational equations,
which will be discussed in the following sections.

1. TDH with piecewise constant coefficients

One method is to approximate the actual time-dependent
TDH �9� by a Hamiltonian with piecewise constant coeffi-
cients. This means assuming that the coefficients DV

2(q��t�) jk
�j ,k=1,2 , . . . ,N� of HV �9� are constants equal to DV

2�q��ti�� jk
for the time interval �ti , ti+�t�. These constants are deter-
mined by the values of the orbit’s coordinates and are known
since we know the time series x��ti�= (q��ti� , p��ti�). Thus, for
each time interval �ti , ti+�t� we end up with a quadratic form
Hamiltonian function HV��q� ,�p� ; ti�, whose equations of mo-
tion form a linear system of differential equations with con-
stant coefficients.

The Hamiltonian HV��q� ,�p� ; ti� can be integrated by any
symplectic or nonsymplectic integration scheme or can be
explicitly solved by performing a canonical transformation to
new variables Q� and P� , so that the transformed Hamiltonian
HVQP becomes a sum of uncoupled one-dimensional Hamil-
tonians, whose equations of motion can be integrated imme-

diately. To this end, let �k be the eigenvalues and v�k
�k=1,2 , . . . ,N� be the unitary eigenvectors of the constant
matrix DV

2(q��ti�). Then matrix T, having as columns the
eigenvectors v�k, defines a canonical change of variables q�
=TQ� , p� =TP� , which gives HV the diagonal form

HVQP = �
i=1

N
1

2
�Pi

2 + �iQi
2� . �28�

The equations of motion of HVQP are then easily solved.
In our study we use the same symplectic integrator �SB2

c �
both for obtaining the time series x��ti� and for integrating the
quadratic form Hamiltonian HV��q� ,�p� ; ti� in the time inter-
val �ti , ti+�t�. We name this approach the TDHcc method �cc
means constant coefficients�. An alternative approach is to
compute the exact solution of the equations of motion of
HV��q� ,�p� ; ti� �whose piecewise constant coefficients are ob-
tained by the symplectic integration of the orbit using the SB2

c

scheme� by transforming it to a system of N uncoupled har-
monic oscillators through the canonical transformation in-
duced by matrix T. This approach is called the TDHes
method �es means exact solution�.

In general, the transformation matrix T is determined for
each time interval �ti , ti+�t� by solving numerically the ei-
genvalue problem

DV
2
„q��ti�…v� = �v� , �29�

a procedure which could become computationally very time
consuming, especially for systems with many degrees of
freedom. On the other hand, in some simple low-dimensional
cases like, for example, the Hénon-Heiles system �54�, the
transformation matrix T can be determined analytically �see
Appendix, Sec. 2a�.

2. Integration of the TDH in an extended phase space

Instead of approximating HV �9� by a quadratic form hav-
ing constant coefficients for each time interval �ti , ti+�t�, we
can explicitly treat HV as a time-dependent Hamiltonian.
This time dependency is due to the fact that the coefficients
of HV are functions of the orbit’s coordinates q��t�. Like in the
previous approach, we consider the time series q��ti� to be
known from the numerical integration of the Hamilton equa-
tions �6�.

The ND time-dependent Hamiltonian HV can be trans-

formed to a time-independent Hamiltonian H̃V with an extra
degree of freedom by considering the time t as an additional
coordinate �see, for example, �31�, Sec. 1.2b�. For this pur-
pose, we add to the Hamilton equations of motion of HV the
equations

ṫ = 1, HV
˙ =

�HV

�t
. �30�

Then we set t and −HV as additional coordinate and momen-
tum, respectively, i.e., �qN+1= t and �pN+1=−HV, and define
the new Hamiltonian
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H̃V���,�� � = HV��q� ,�p� ;t� + �pN+1, �31�

where �� = ��q� , t� and �� = ��p� ,−HV� are, respectively, the new
coordinates and momenta. The flow in the
�2N+2�-dimensional extended phase space of the �N+1�D
Hamiltonian H̃V is parametrized by a “new” time � such that
t���=�, which does not appear explicitly in the functional

form of H̃V �31�. The set of equations �7� and �30� are the

Hamilton equations of motion of H̃V.
The dynamics of the ND TDH HV �9� is equivalent to that

of the �N+1�D Hamiltonian,

H̃V��q� ,t,�p� ,pN+1� =
1

2�
j=1

N

�pi
2 + �pN+1

+
1

2�
j,k

N

DV
2
„q��t�… jk�qj�qk. �32�

This Hamiltonian can be easily integrated by any symplectic
integration scheme since it can be split into two integrable
parts:

Ã��p� ,�pN+1� =
1

2�
j=1

N

�pi
2 + �pN+1,

�33�

B̃��q� ,t� =
1

2�
j,k

N

DV
2
„q��t�… jk�qj�qk.

The maps e�LÃ and e�LB̃, which propagate the set of initial
conditions ��q� , t ,�p� ,�pN+1� at time t to their final values
��q� � , t� ,�p� � ,�pN+1� � at time t+�, are

e�LÃ:�
�q� � = �q� + �p� �

t� = t + �

�p� � = �p�

�pN+1� = �pN+1,
 �34�

e�LB̃:�
�q� � = �q�

t� = t

�p� � = �p� −
�B̃��q� ,t�

��q�
�

�pN+1� = �pN+1 −
�B̃��q� ,t�

�t
� .
 �35�

The corrector term of the SBAB and SABA integration
schemes,

C̃ = ˆB̃,�B̃,Ã�‰ = �
i=1

N � �B̃��q� ,t�

��qi
�

�2

, �36�

is a function of only the coordinates �� = ��q� , t� and thus easily
integrated,

e�LC̃:�
�q� � = �q�

t� = t

�p� � = �p� −
�C̃��q� ,t�

��q�
�

�pN+1� = �pN+1 −
�C̃��q� ,t�

�t
� .
 �37�

The explicit expressions of these maps for the Hénon-Heiles
system �54� are given in Appendix, Sec. 2b.

From Eqs. �34�, �35�, and �37� we see that time t is
changed only by the act of operator e�LÃ. On the other hand,
operators e�LB̃ and e�LC̃ require the knowledge of positions q�
at specific times for the evaluation of the partial derivatives

of B̃ and C̃. We also note that for all these operators the last
equation for �pN+1 can be neglected since the knowledge of
its value does not influence the evolution of the other quan-
tities, and consequently the solution of the variational equa-
tions �7�.

Since the coordinates of the orbit q� are known only at
specific times ti= i�t �i=0,1 , . . .�, one is restricted to using
integration schemes that require the knowledge of q� at ex-
actly these times. Such a scheme is, for example, the SB1
integrator

SB1 = e��/2�LB̃e�LÃe��/2�LB̃ �38�

�which is practically the well-known Störmer/Verlet or leap-
frog method� with �=�t. The right operator e��/2�LB̃ which
acts first requires the knowledge of q��ti�, while the left op-
erator e��/2�LB̃ needs the values of q��ti+��=q��ti+1�, because
the time value has changed from ti to ti+� by e�LÃ. Note that
the SA1 integrator,

SA1 = e��/2�LÃe�LB̃e��/2�LÃ, �39�

requires the knowledge of q��ti+� /2� for the application of
e�LB̃. This second-order integration scheme could be used
with �=2�t, leading in general to a less accurate algorithm
compared to SB1 �38�, which is also a second-order integrator
but uses a smaller time step �=�t. For �=2�t it is in general
more efficient to apply the integration scheme

SB2 = e��/6�LB̃e��/2�LÃe�2�/3�LB̃e��/2�LÃe��/6�LB̃, �40�

which was initially derived in �24�. This integrator needs the
known values q��ti�, q��ti+� /2�=q��ti+�t�=q��ti+1�, and
q��ti+��=q��ti+2�t�=q��ti+2�.

The above integration schemes can also be combined with
a corrector step since e�LC̃ �37� does not change the time
values and acts before and after the main body of the inte-
grator �see Eq. �22��, when t has values for which we know
the coordinates q� . We refer to this technique as the TDHeps
method �eps means extended phase space�. For the numerical
applications of the TDHeps method �presented in Sec. VII�
we use the fourth-order integrator SB2

c both for the integration
of the variational equations and for the computation of the
orbit.
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Higher-order SBAB or SABA integrators cannot be used
in this framework, because they require the knowledge of q�
at nonequidistant time values, different from ti. In order to
apply such schemes one could initially compute the solution
of Eq. �6� also at these specific times �e.g., by interpolation�,
but this would lead to a cumbersome, complex, time con-
suming, and consequently inefficient scheme.

C. Tangent map method

The set of equations �6� and �7� can be considered as a
unified set of differential equations

�
q�̇ = p�

p�̇ = −
�V�q��

�q�

�q�̇ = �p�

�p�̇ = − DV
2�q���q�

⇒
du�

dt
= LHVu� , �41�

where u� = �q� , p� ,�q� ,�p� � is a vector formed by the phase-space
vector x� = �q� , p�� and the deviation vector w� = ��q� ,�p� �, and
LHV is the differential operator of the whole system. In anal-
ogy to Eq. �21�, the solution of system �41� for an initial
condition u��0� can be formally written as u��t�=etLHVu��0�. We
describe now how symplectic integrators can be used to ob-
tain this solution.

First of all, let us note that Eqs. �41� cannot be considered
as the Hamilton equations of motion of some generalized
Hamiltonian function. If such a Hamiltonian existed, and
could be split into two integrable parts, any symplectic inte-
grator could be used for finding the solution of system �41�.
Since this is not the case, we follow a different approach to
achieve this goal. In Sec. V the integration of the equations
of motion of Hamiltonian �5� over one integration time step
� was split into steps over appropriate time intervals ci� and
di�, where the dynamics was determined either by Hamil-
tonian A�p�� or B�q�� �Eq. �23��. During these intermediate
steps the tangent dynamics of the system is governed by the
variational equations

�q�̇ = �p� , �p�̇ = 0, �42�

for A�p��, and by

�q�̇ = 0, �p�̇ = − DV
2�q���q� , �43�

for B�q��. Therefore, for each intermediate step of the sym-
plectic integration scheme the dynamics of the phase and the
tangent space is governed by sets of equations

�
q�̇ = p�

p�̇ = 0

�q�̇ = �p�

�p�̇ = 0
⇒

du�

dt
= LAVu� , �44�

�
q�̇ = 0

p�̇ = −
�V�q��

�q�

�q�̇ = 0

�p�̇ = − DV
2�q���q�

⇒
du�

dt
= LBVu� , �45�

for Hamiltonians A�p�� and B�q�� �Eq. �23��, respectively, with
LAV and LBV being the corresponding differential operators.

These sets of equations are immediately solved, leading to
maps

e�LAV:�
q�� = q� + p��

p�� = p�

�q� � = �q� + �p� �

�p� � = �p� ,
 �46�

e�LBV:�
q�� = q�

p�� = p� −
�V�q��

�q�
�

�q� � = �q�

�p� � = �p� − DV
2�q���q� � .

 �47�

Obviously the first two equations of maps e�LAV and e�LBV are
exactly maps e�LA �24� and e�LB �25�, respectively.

Thus, any symplectic integration scheme used to solve the
Hamilton equations of motion (6), which involves the succes-
sive application of maps e�LA (24) and e�LB (25), can also be
used for the simultaneous integration of the variational
equations (7), i.e., for solving the set of equations (41), by
replacing maps e�LA and e�LB with maps e�LAV (46) and e�LBV

(47), respectively. This statement is a specific application of a
more general result which is stated, for example, in �21�:
symplectic integration schemes can be applied to first-order

differential systems Ẋ=LX that can be written in the form

Ẋ= �LA+LB�X, where L, LA, and LB are differential operators

for which the two systems Ẋ=LAX and Ẋ=LBX are inte-
grable. The system of differential equations u̇=LHVu �41�
belongs to this category since it can be split into the inte-
grable systems u̇=LAVu �44� and u̇=LBVu �45�.

Let us discuss this splitting in more detail. System �41�
can be written as

Q�̇ = P� , P�̇ = F� �Q� � , �48�

with Q� = �q� ,�q� �= �q1 ,q2 , . . . ,qN ,�q1 ,�q2 , . . . ,�qN�, P�
= �p� ,�p� �= �p1 , p2 , . . . , pN ,�p1 ,�p2 , . . . ,�pN�, and F� �Q� � being
a vector with coordinates
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Fi = �−
�V�q��

�qi
for 1 	 i 	 N

− �
k=1

N
�2V�q��
�qi � qk

�qk for N � i 	 2N . �49�

Then the dynamics of any general variable U�Q� ,P� � is given
by

U̇�Q� ,P� � = �
i=1

2N � �U�Q� ,P� �
�Qi

Q̇i +
�U�Q� ,P� �

�Pi
Ṗi�

=
�48���

i=1

2N �Pi
�

�Qi
+ Fi

�

�Pi
��U�Q� ,P� �

= �LAV + LBV�U�Q� ,P� � . �50�

The solution of Eq. �50� for a time step � can be formally
written as

U�t + �� = e��LAV+LBV�U�t� . �51�

The decomposition of e��LAV+LBV� into products of operators
e�LAV and e�LBV by any symplectic integration scheme gives
rise to an exponential-splitting algorithm for the integration
of system �41�, which would be symplectic if Eqs. �41� were
the equations of motion of a Hamiltonian function �which are
not, as we have already discussed�.

In our study we consider symplectic integrators that re-
quire the application of corrector terms. When the SBn

c �SAn
c �

integrators are used, map e�LC �27� acts for some intermedi-
ate steps of the algorithm. Formally one can consider that for
these steps the phase-space dynamics is governed by the
Hamilton equations of motion of the Hamiltonian function
C�q�� �26� �whose solution is given by map e�LC �27��. Con-
sequently, the tangent space dynamics is described for these
time steps by the variational equations of Hamiltonian C�q��.
So the evolution of the general vector u� is given by

�
q�̇ = 0

p�̇ = −
�C�q��

�q�

�q�̇ = 0

�p�̇ = − DC
2 �q���q�

⇒
du�

dt
= LCVu� , �52�

where DC
2 �q�� jk=�2C�q�� /�qj�qk. We easily see that the solu-

tion of these equations is given by the map

e�LCV:�
q�� = q�

p�� = p� −
�C�q��

�q�
�

�q� � = �q�

�p� � = �p� − DC
2 �q���q� � ,

 �53�

which, of course, is an extension of map e�LC �27�. So the use
of the corrector term with the SBn �SAn� integrator for the
integration of system (41) requires the additional substitution
of map e�LC (27) by the extended map e�LCV (53).

We call the above-described procedure for the simulta-
neous integration of the Hamilton equations of motion �6�
and the variational equations �7� the tangent map (TM)
method. The explicit expressions of the extended maps e�LAV

�46�, e�LBV �47�, and e�LCV �53� for the Hénon-Heiles system
�54� are given in Appendix, Sec. 2c.

VII. NUMERICAL APPLICATIONS

In order to study the efficiency of the different schemes
for the integration of the variational equations, we apply
them to some simple Hamiltonian systems of different num-
bers of degrees of freedom. In particular we consider �a� the
well-known two-dimensional �2D� Hénon-Heiles system
�32� described by the Hamiltonian

H2 =
1

2
�px

2 + py
2� +

1

2
�x2 + y2� + x2y −

1

3
y3, �54�

�b� the three-dimensional �3D� Hamiltonian system

H3 =
1

2
�x2 + px

2� +
�2

2
�y2 + py

2� +
�3

2
�z2 + pz

2� + x2y + x2z ,

�55�

studied in �9,17,33�, and �c� the famous Fermi-Pasta-Ulam
�FPU� �-lattice model �34�, which describes a chain of N
particles with nearest-neighbor interaction, for the particular
case of N=8 studied in �10�. The eight-dimensional �8D�
Hamiltonian of this system is

H8 = �
i=1

8
pi

2

2
+ �

i=0

8 � �qi+1 − qi�2

2
+

��qi+1 − qi�4

4
� . �56�

We consider some typical regular and chaotic orbits of these
systems and investigate the efficiency of the various numeri-
cal techniques by checking how well their outcomes verify
the following theoretically known properties of the LCEs
and the GALIs:

�i� The finite-time mLCE X1�t� should eventually tend to
zero in the case of regular orbits following the power law
given in Eq. �12�.

�ii� According to Eq. �13�, the LCEs are grouped in pairs
of values having opposite signs, and consequently their sum
vanishes. Therefore, the same relation should be also satis-
fied by the limiting values of the corresponding finite-time
LCEs, i.e.,

lim
t→�

�Xi�t� + X2N−i+1�t�� = 0, i = 1,2, . . . ,N . �57�

�iii� According to Eq. �14� at least two LCEs vanish, and
therefore XN�t� and XN+1�t� should tend to zero.

�iv� The GALIs follow laws �16� and �17� for chaotic and
regular orbits, respectively.

A. 2D Hénon-Heiles system

We implement first the various numerical schemes pre-
sented in Sec. VI for the integration of the variational equa-
tions of regular and chaotic orbits of the 2D Hénon-Heiles
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system �54�. The explicit expressions of all these schemes
are presented in detail in Appendix, Sec. 2. The orbits of the
Hénon-Heiles system have four LCEs �1��2��3��4, with
�2=�3=0 and �1=−�4�0. A simple qualitative way of
studying the dynamics of a Hamiltonian system is to plot the
successive intersections of its orbits with a Poincaré surface
of section �PSS� �see, for example, Sec. 1.2b of �31��. In 2D
systems like Eq. �54�, the PSS is a two-dimensional plane
which allows the clear visualization of the dynamics.

In our study we keep the value of the Hamiltonian fixed at
H2=0.125. Initially, we consider two representative orbits of
the system: the regular orbit R1 with initial conditions x=0,
px�0.2334, y=0.558, py =0, and the chaotic orbit C1 with
initial conditions x=0, px�0.4208, y=−0.25, py =0. In Fig. 1
we plot the intersection points of these two orbits with the
PSS defined by x=0, px�0. The points of the regular orbit
lie on a torus and form five smooth closed curves �the so-
called stability islands� on the PSS, while the points of the
chaotic orbit appear randomly scattered.

First, we use the DOP853 nonsymplectic scheme to inte-
grate the set of differential equations composed from the
Hamilton equations of motion �A1� and the variational equa-
tions �A2�. In our computations we set the integration time
step �=0.05 and the threshold parameter �=10−5, unless oth-
erwise stated.

We also implement the TDHcc, the TDHes, and the TD-
Heps methods. For these methods we initially integrate Eqs.
�A1� by the SB2

c scheme. In this way we obtain the coordi-
nates of the orbit at times ti= i�t �i=0,1 ,2 , . . .�, with �t
being the constant integration step. Then we assume the
TDH �A3� to have constant coefficients in each time interval
�ti , ti+�t� and either we integrate in this interval its equa-
tions of motion by the SB2

c integrator �TDHcc method� or we
compute the exact solution of these equations by performing
the canonical transformation induced by matrix T of Eq.
�A10� �TDHes method�. Alternatively, we use the SB2

c

scheme for integrating the equations of motion of the 3D

Hamiltonian H̃VH �A13� in the time interval �ti , ti+2�t�, by
applying Eqs. �A15�, �A16�, and �A18� with time step �
=2�t �TDHeps method�. Finally, we implement the TM
method using the SB2

c integrator, which requires the applica-
tion of maps �A21�–�A23�.

As a final remark we note that in all the above-described
schemes after each time step � the LCEs �GALIs� are com-
puted and the deviation vectors are orthonormalized �normal-
ized� having a norm equal to 1.

1. Regular orbits

Results concerning the LCEs of the regular orbit R1 are
shown in Fig. 2. In particular, the time evolution of the
finite-time LCEs X1 and X2 is given in the upper panels,
while in the lower panels the evolution of quantities
�X1+X4� and �X2+X3� is plotted.

In Table I the information on the computation of the
whole spectrum of LCEs of the R1 orbit up to t=108 is
reported. The relative energy error, which could be consid-

-0.4

0

0.4

-0.4 0 0.4

p y

y

FIG. 1. The PSS defined by x=0, px�0, for the Hénon-Heiles
system �54� with H2=0.125. The regular orbit R1 corresponds to
the five closed black curves around the right large island of stability,
while the chaotic orbit C1 is represented by the black dots scattered
over the PSS. In order to get a clear picture of the structure of the
whole PSS, other orbits of the system are plotted in gray.
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FIG. 2. The time evolution of X1�t� �black curves�, X2�t� �gray curves� �upper panels� and �X1�t�+X4�t�� �black curves�, �X2�t�+X3�t��
�gray curves� �lower panels� in log-log plots for the regular orbit R1 of the Hénon-Heiles system �54�. The variational equations are
integrated by ��a� and �f�� the DOP853 integrator, and by ��b� and �g�� the TDHcc, ��c� and �h�� the TDHes, ��d� and �i�� the TDHeps, and ��e�
and �j�� the TM methods. Dashed lines in �a� and �e� correspond to functions proportional to t−1. The step size is �=0.05 for all methods. For
the DOP853 method the parameter �=10−5 is used.
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ered as an indicator of the goodness of the integration pro-
cedure of orbit R1, increases with time for the DOP853

method, while it fluctuates around a constant value for all
other methods. The values of this error and of X1 at the end
of the integration are reported in the table. The CPU time
needed on an ordinary personal computer by each method for
the integration of the equations of motion and the variational
equations, as well as for the computation of the spectrum of
LCEs, is also given.

The results of Fig. 2 show that the DOP853 �Fig. 2�a�� and
the TM �Fig. 2�e�� methods have the best performance in
evaluating the mLCE, because X1 tends to zero until the end
time t=108 of the integration, following a t−1 law. The good
behavior of the DOP853 and the TM methods is due to the fact
that the first technique is used for the integration of the actual
set of equations �A1� and �A2� which govern the dynamics
of the orbit and the deviation vector, while the second
method approximates very accurately the dynamics of the
system by the repeated application of a symplectic map, and
the tangent dynamics by the act of the corresponding tangent
map.

For the TDHcc �Fig. 2�b��, the TDHes �Fig. 2�c��, and the
TDHeps �Fig. 2�d�� methods X1 initially decreases too as
X1� t−1, but later its value deviates from the approximate t−1

law and tends to a constant �different for each method� non-

zero value. Among these techniques the TDHeps method has
the best performance, because the computed X1 levels off to
smaller values than in the cases of TDHcc and TDHes meth-
ods, being X1�2.3�10−5 at t=108. Nevertheless, from the
results of Figs. 2�b�–2�d� one would wrongly characterize the
regular orbit R1 as chaotic. Concerning the TDHcc and TD-
Hes methods, the main reason for this discrepancy is that
these methods approximate the tangent dynamics by consid-
ering constants the actual time-dependent coefficients of
Hamiltonian HVH �A3�, for the duration of each integration

TABLE I. Information for the computation of the whole spectrum of LCEs for the regular orbit R1 of the
Hénon-Heiles system �54�, up to t=108. The nonsymplectic DOP853 algorithm and the symplectic SB2

c inte-
grator are used. In the latter case the SB2

c scheme is used for the evolution of the orbit, while different
approaches are applied for the integration of the variational equations. Step size � is the time between two
successive evaluations of the LCEs. For the TDHcc, the TDHes, and the TM methods, � coincides with the
integration time step �t of the orbit, while for the TDHeps method �=2�t. In the case of the DOP853

algorithm the integration over time � is performed with a variable integration step, so that the local one-step
error is kept smaller than �. The relative energy error and the estimated value X1 of the mLCE at t=108 are
given. The required CPU time for the implementation of each method on an ordinary personal computer
�AMD Athlon 1 GHz� is given in the last column. The first five cases are the ones presented in Fig. 2.

Integrator Method Step size � Relative energy error X1 CPU time

DOP853 ��=10−5� 5�10−2 7�10−10 1.6�10−7 8 h 18 min

SB2
c TDHcc 5�10−2 2�10−8 9.4�10−4 5 h 48 min

SB2
c TDHes 5�10−2 2�10−8 9.4�10−4 5 h 36 min

SB2
c TDHeps 5�10−2 2�10−8 2.3�10−5 6 h 03 min

SB2
c TM 5�10−2 2�10−8 1.5�10−7 4 h 40 min

DOP853 ��=10−5� 1�10−1 4�10−7 1.6�10−7 4 h 11 min

DOP853 ��=10−10� 1�10−1 4�10−7 1.6�10−7 4 h 12 min

DOP853 ��=10−5� 2�10−1 2�10−4 2.4�10−7 2 h 06 min

DOP853 ��=10−10� 2�10−1 2�10−4 2.5�10−7 2 h 03 min

DOP853 ��=10−5� 5�10−1 8�10−1 1.1�10−6 50 min

DOP853 ��=10−10� 5�10−1 6�10−4 −7.7�10−8 1 h 40 min

SB2
c TDHeps 1�10−1 1�10−6 8.9�10−5 3 h 01 min

SB2
c TDHeps 2�10−1 2�10−5 3.5�10−4 1 h 33 min

SB2
c TDHeps 5�10−1 1�10−3 1.8�10−3 37 min

SB2
c TM 1�10−1 2�10−6 1.6�10−7 2 h 16 min

SB2
c TM 2�10−1 2�10−5 3.3�10−8 1 h 08 min

SB2
c TM 5�10−1 1�10−3 5.4�10−8 27 min
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FIG. 3. The time evolution of X1�t� in log-log plots for the
regular orbit R1 of the Hénon-Heiles system �54� for �a� the DOP853

�with �=10−5� and �b� the TDHeps methods, when different step
sizes � are used. In �a� the curves for �=0.05 and �=0.1 practically
overlap.

CH. SKOKOS AND E. GERLACH PHYSICAL REVIEW E 82, 036704 �2010�

036704-10



time step. The equations of motion of HVH with constant
coefficients are solved explicitly by the TDHes method,
while their solution is approximated by the application of the
TDHcc scheme. For the used time step �=0.05, both meth-
ods give practically the same X1 at t=108. For smaller time
steps the final values of X1 obtained by both techniques are
closer to the theoretical value X1=0. On the other hand, since
the TDHeps method takes into account the time-dependent
nature of the coefficients of HVH, it succeeds in obtaining a
better estimation of the mLCE compared to the TDHcc and
the TDHes methods.

The computed values of the second largest LCE ��2=0�
have similar characteristics with the results for the mLCE.
Again, the finite-time LCE X2 computed by the DOP853 inte-
grator �Fig. 2�a�� and the TM method �Fig. 2�e�� tends to
zero until the end of the integration time. On the other hand,
X2 computed by the TDHcc �Fig. 2�b��, the TDHes
�Fig. 2�c��, and the TDHeps �Fig. 2�d�� methods does not
tend to zero, but levels off to positive values which are
always smaller than the level-off values of X1. Again the
TDHeps approach is more accurate, because the final value
X2�9.3�10−6 at t=108 obtained by this method is slightly
smaller than the ones found by the TDHcc and the TDHes
methods, and thus closer to the real �2=0 value.

The ability of the DOP853 and the TM methods to evaluate
quite accurately the LCEs of the regular orbit R1 is also
shown by the tendency of quantities �X1+X4� and �X2+X3� to
become zero �Figs. 2�f� and 2�j��. Actually these quantities
attain, for both methods, very small values of �10−7 at
t=108. But when these quantities are computed by the other
three techniques they do not become zero as they theoreti-
cally should do, but level off to small positive values �Figs.
2�g�–2�i��. Again the TDHeps method exhibits a better per-
formance since the level-off values are smaller than the ones
obtained by the TDHcc and the TDHes methods.

Looking in Table I at the CPU times needed for the com-
putation of the whole spectrum of LCEs, one sees that the
nonsymplectic method is the most expensive one. Among the
remaining approaches the TM method is the fastest due to
the fact that the whole set of equations for the evolution of
both the orbit and the deviation vector are integrated to-
gether. The TDHcc and TDHes methods require more CPU
time than the TM method, because for each integration time
step the evolutions of the orbit and the deviation vectors are
not performed simultaneously. First the orbit is evolved. Its

coordinates define the coefficients of HVH �A3�, which are
considered to be constant for the duration of the time step.
Then, the deviation vectors are advanced for this particular
Hamiltonian function for one time step. The TDHeps method
needs even more CPU time mainly because the orbit is inte-
grated with half time step ��t=� /2� with respect to the other
methods.

The first five rows of Table I contain information for the
particular cases shown in Fig. 2. From these data we see that
the energy error for the DOP853 method at t=108 is smaller
than the error of the SB2

c integrator used by the other meth-
ods. As it is also shown in Fig. 2 the values of X1 obtained by
the DOP853 and the TM methods are close to each other,
despite the fact that the DOP853 method integrates orbit R1
with a better accuracy. Of major practical importance is the
fact that the DOP853 method needs almost two times more
CPU time than the TM method in order to compute the four
LCEs up to t=108. Increasing the integration step size of
DOP853 to �=0.1 �Fig. 3�a�� still permits the computation of
the same X1 value at t=108, but with a larger error in the
conservation of H2. The X1 computed by the DOP853 method
for even larger step sizes, such as �=0.2 and �=0.5, starts
after some time to exhibit deviations from the X1� t−1 law
�Fig. 3�a��, leading to somewhat larger final values
�X1�2.4�10−7 for �=0.2 and X1�1.1�10−6 for �=0.5�
with respect to the X1�1.6�10−7 value found for smaller �.
From our numerical experiments we see that the required
CPU time for the DOP853 method, as well as the relative error
of the computed energy H2, mainly depends on the integra-
tion time step � and not on the threshold parameter �. In
particular, for ��0.2 the value of � does not practically in-
fluence the required CPU time. For larger values of � �for
which nevertheless the obtained results are not very accurate�
the CPU time is increased and the accuracy is improved
when � is decreased. On the other hand, the TM method
succeeds even for �=0.5 to compute very fast the correct
small final value of X1�10−7. This method keeps also the
relative energy error at an acceptably low level, which is not
the case any more for the DOP853 method with the same time
step. Besides the computation speed, this is an additional
advantage of the TM method over the DOP853 scheme.

It is worth noting that, although the DOP853 algorithm is
an integration scheme of higher order than the SB2

c symplec-
tic integrator used in the TM method, it shows worse char-
acteristics than the TM method, not only for large �, but also
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FIG. 4. The time evolution of G2�t� �black curves�, G3�t� �gray curves�, and G4�t� �light gray curves� for the regular orbit R1 of the
Hénon-Heiles system �54�. The variational equations are integrated by �a� the DOP853, �b� the TDHcc, �c� the TDHes, �d� the TDHeps, and
�e� the TM methods. The plotted lines in �a� and �e� correspond to functions proportional to t−2 �dashed lines� and t−4 �dotted lines�. The
values of � and � used in the integrations are the same as in Fig. 2.
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when we compare implementations of the two algorithms
that require almost the same CPU time. For example, the
DOP853 method for �=0.2 and �=10−10 �or even �=10−5� has
a final relative energy error which is larger by two orders of
magnitude with respect to the error of the TM method for
�=0.1 �which requires almost the same CPU time �2 h, as
seen in Table I�, and additionally the computed X1 deviates
from the X1� t−1 law �Fig. 3�a��.

Among the other applied methods which wrongly charac-
terize the R1 orbit as chaotic, the TDHeps scheme has the
best performance since X1 eventually levels off to a small
positive value. From the results of Fig. 3�b� we see that the
decrease in the step size � pushes the starting time of the
level-off to larger values and decreases the final value of X1.
So as one should expect, smaller integration steps result in a
more accurate description of the evolution of the orbit and
deviation vectors and leads to more accurate estimations of
the LCEs. Nevertheless, the TM method is preferred over the
TDHeps method because for the same step size � it needs
less CPU time, and additionally it estimates more accurately
the LCEs.

For a regular orbit of the 2D Hamiltonian �54� and a ran-
dom choice of initial deviation vectors, the theoretical pre-
diction �17� for the behavior of the GALIs gives

G2�t� � const, G3�t� �
1

t2 , G4�t� �
1

t4 . �58�

In Fig. 4 we plot the time evolution of G2, G3, and G4 for the
regular orbit R1, when the variational equations are inte-
grated by the same five numerical schemes used in Fig. 2.
The results obtained by the DOP853 �Fig. 4�a�� and the TM
�Fig. 4�e�� schemes are in accordance with the theoretical
predictions �58�. The GALIs computed by the TDHcc �Fig.
4�b��, the TDHes �Fig. 4�c��, and the TDHeps �Fig. 4�d��
methods follow the theoretical laws �58� up to t�104 for the
first two methods and up to t�105 for the last one. After that
time the GALIs fall exponentially fast to zero indicating,
wrongly, that the orbit is chaotic. This behavior is in agree-
ment with the behavior of X1 obtained by these methods in
Fig. 2, because the mLCE levels off to a positive value after
some initial time interval, implying that the orbit is chaotic.
The TDHeps method has again a better performance than the
other two methods used to approximate the dynamics of the

TDH �A3�, since the computed GALIs follow the theoretical
predictions �58� for longer times, but eventually it also fails
to characterize correctly the nature of orbit R1.

2. Chaotic orbits

The computed LCEs and GALIs of the chaotic orbit C1
are practically the same irrespectively of which of the previ-
ously presented methods is used for the integration of the
variational equations. For this reason in Fig. 5 we present
results obtained only by the DOP853 integrator.

From the results of Fig. 5�a� we see that X1 remains al-
most constant and different from zero, having practically the
same value X1�4.5�10−2 at t=108 for all applied schemes.
Thus, all used methods are able to determine correctly the
chaotic nature of the orbit. Since the Hénon-Heiles system
�54� is conservative, �2=0. From Fig. 5�a� we see that the
finite-time LCE X2 tends to zero and becomes negative after
t�105 with �X2��10−5. At that time all the applied numeri-
cal approaches reach their limits of applicability for the ac-
curate computation of �2. The quantities �X1+X4� and
�X2+X3� �Fig. 5�b��, which theoretically should be zero, level
off after t�103–104 to �X1+X4��4�10−4 and �X2+X3�
�10−4 for all used schemes. This behavior indicates that all
numerical methods succeed to revealing the symmetric na-
ture of the spectrum of LCEs, but only up to four decimal
digits of accuracy. Finally, the computed values of GALIs of
orbit C1 �Fig. 5�c�� show an exponential decay to zero,
which is a characteristic of chaoticity.
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Figure 5 shows the equivalence of the different numerical
techniques in the case of the chaotic orbit C1. This is a clear
difference with respect to the behavior of the various numeri-
cal schemes for the regular orbit R1, where only the DOP853

and the TM methods gave similar �to each other� and correct
results �Figs. 2 and 4�. In order to check if the equivalence of
all methods is valid for all chaotic orbits we consider a
weakly chaotic orbit confined to a thin region of the phase
space at the borders of a small stability island �Fig. 6�. We
call this orbit C2 and its initial conditions are x=0,
px�0.11879, y=0.335 036, py =−0.385 631.

From the results of the finite-time LCEs of orbit C2 pre-
sented in Fig. 7, we see that both the DOP853 �Fig. 7�a�� and
the TM �Fig. 7�e�� methods characterize orbit C2 as weakly
chaotic having a small mLCE �1�4�10−6. The TDHcc
�Fig. 7�b��, the TDHes �Fig. 7�c��, and the TDHeps �Fig.
7�d�� methods also characterize orbit C2 as chaotic but over-
estimate the value of �1. Thus, these three methods fail to
compute accurately the small value of the mLCE, with the
TDHeps method showing once more the best performance,
because the computed value �X1�1.3�10−5� is closer to the
real value of �1. The limitations of these three methods are
also clearly seen from the fact that the quantities �X1+X4� and
�X2+X3� �Figs. 7�g�–7�i�� level off to larger values with re-
spect to the results obtained by the DOP853 �Fig. 7�f�� and the

TM �Fig. 7�j�� methods. It is worth noting that the level-off
values of �X1+X4� and �X2+X3� obtained for orbit C2 by the
DOP853 and the TM methods are smaller than the saturation
values of the same quantities for the C1 orbit �Fig. 5�b��.

The results of Figs. 5 and 7 lead us to conclude that the
DOP853 and the TM methods are able to accurately compute
mLCEs for a larger range of �1 values than the TDHcc, the
TDHes, and the TDHeps techniques. More specifically, our
results show that the DOP853 and the TM schemes can evalu-
ate �1 having values at least as small as 10−6, while these
small values definitely exceed the computational ability of
the TDHeps method �which is the one with the best perfor-
mance among the three other used methods� for the used step
size �.

The Gk �k=2,3 ,4� computed by the DOP853 �Fig. 8�a��
and the TM �Fig. 8�e�� methods has practically the same
behavior. Up to t�106, when the values of X1 in Figs. 7�a�
and 7�e� start to level off, deviating from the X1� t−1 law, the
GALIs follow the theoretical predictions �58� of regular mo-
tion. Later on the chaotic behavior of orbit C2 becomes
prominent and the GALIs fall exponentially to zero. The
time evolution of GALIs computed by the TDHcc �Fig.
8�b��, the TDHes �Fig. 8�c��, and the TDHeps �Fig. 8�d��
methods also indicates that the orbit is chaotic, but the expo-
nential decay to zero starts earlier. This behavior is in accor-
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FIG. 7. The time evolution of X1�t� �black curves�, X2�t� �gray curves� �upper panels� and �X1�t�+X4�t�� �black curves�, �X2�t�+X3�t��
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dance with the overestimation of orbit’s chaoticity, which
was also seen in the computation of X1 �Figs. 7�b�–7�d��.

B. Hamiltonian systems with more than two degrees
of freedom

Let us now apply the five different methods used in Sec.
VII A to regular and chaotic orbits of the 3D and the 8D
Hamiltonian systems �55� and �56�. In all studied cases the
computed LCEs and the GALIs have similar characteristics
to the ones seen for the 2D system �54�. Due to the fact that
the TM, the DOP853, and the TDHeps methods always exhib-
ited the best numerical performance, we present in this sec-
tion results obtained only by these methods for the case of
regular orbits.

In Fig. 9 we show results for the six LCEs of a regular
orbit with initial conditions x=y=z=0, px=0.1, py =0.347,
pz=0 �orbit R2� of the 3D system �55�, which was also stud-
ied in �9�. Similarly to the results obtained for the 2D regular
orbit R1 in Fig. 2, the three largest finite-time LCEs X1, X2,
and X3 computed by the DOP853 �Fig. 9�a�� and the TM �Fig.
9�c�� methods tend to zero following a Xi� t−1 �i=1,2 ,3�
law, which indicates the regular nature of the orbit. These
two methods are also able to determine the symmetric nature
of the spectrum of LCEs since the quantities �X1�t�+X6�t��,
�X2�t�+X5�t��, and �X3�t�+X4�t�� tend to zero �Figs. 9�d� and
9�f��. On the other hand, using the TDHeps method one
would again wrongly characterize the orbit as chaotic be-
cause the computed X1 levels off at t�104 to a positive
value, being X1�1.3�10−3 at t=106 �Fig. 9�b��. X2 and X3
show a better convergence to zero, while the latter one be-
comes negative after t�105 with �X3��10−5. In addition, the
quantity �X1�t�+X6�t�� levels off to some finite value, while
�X2�t�+X5�t�� and �X3�t�+X4�t�� continue to approach zero
until the end of the integration �Fig. 9�e��.

According to Eq. �17� the GALIs of a regular orbit of the
3D Hamiltonian system �55� should evolve as

G2�t� � const, G3�t� � const,
�59�

G4�t� �
1

t2 , G5�t� �
1

t4 , G6�t� �
1

t6 .

This behavior is seen for orbit R2 in Figs. 10�a� and 10�c�
where the DOP853 and the TM methods are used, respectively,
for the integration of the variational equations. Similarly to
the case of regular orbit R1 �Fig. 4� the GALIs indicate that
the orbit is regular. On the other hand, in Fig. 10�b� where
the TDHeps method is applied, the computed GALIs even-
tually show an exponential decay, wrongly suggesting that
orbit R2 is chaotic.

Finally, let us consider a particular regular orbit of the 8D
Hamiltonian system �56� which lies on a low-dimensional
torus. In our study we impose fixed boundary conditions, i.e.,
q0�t�=q9�t�= p0�t�= p9�t�=0 for all times t, fix the system’s
parameter to �=1.5, and consider the regular orbit with ini-
tial conditions qi=0.1, pi=0 �i=1,2 , . . . ,8�, which we call
orbit R3. This orbit lies on a four-dimensional torus and was
also studied in �10�.

According to the theory of GALIs developed in �10�,
regular motion on a four-dimensional torus implies that the
corresponding G2, G3, and G4 remain practically constant,
while the remaining indices up to G16 tend to zero following
particular power laws �see also Fig. 4 of �10��. As we can see
from Fig. 11, these expected behaviors are well reproduced
when the DOP853 �Figs. 11�a� and 11�d�� and the TM �Figs.
11�c� and 11�f�� methods are used for the integration of the
variational equations. On the other hand, the TDHeps
method fails to clearly determine the regular nature of orbit
R3, as well as the dimensionality of the torus on which the
orbit lies. From Figs. 11�b� and 11�e� we see that the com-
puted GALIs have a behavior similar to the one obtained by
the DOP853 and the TM methods, which indicates the regu-
larity of the orbit, but only up to t�105. For t�105 the
computed GALIs eventually show an exponential decay,
wrongly suggesting that the orbit is chaotic.
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FIG. 9. The time evolution of X1�t�, X2�t�, X3�t� �upper panels�
and �X1�t�+X6�t��, �X2�t�+X5�t��, �X3�t�+X4�t�� �lower panels� in
log-log plots for the regular orbit R2 of the 3D Hamiltonian system
�55�. The variational equations are integrated by ��a� and �d�� the
DOP853 integrator, and by ��b� and �e�� the TDHeps and ��c� and �f��
the TM methods. The step size is �=0.05 for all methods. For the
DOP853 method the parameter �=10−5 is used. Dashed lines in �a�
and �c� correspond to functions proportional to t−1.
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equations are integrated by �a� the DOP853, �b� the TDHeps, and �c�
the TM methods. The values of � and � used in the integrations are
the same as in Fig. 9. The plotted lines in �a� and �c� correspond to
functions proportional to t−2 �dashed line�, t−4 �dotted line�, and t−6

�dashed-dotted line�.
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VIII. SUMMARY AND DISCUSSION

We considered the problem of the accurate and fast inte-
gration of the variational equations of autonomous Hamil-
tonian systems. These equations govern the evolution of a
deviation vector from an orbit of the system. The reliable
determination of this evolution is necessary when studies of
the chaotic behavior of the system are needed. Many chaos
detection techniques, such as the LCEs and the GALIs which
we considered in our study, are based on the evolution of one
or more deviation vectors.

We made a detailed presentation of several numerical
schemes for the integration of the variational equations, and
we applied them to regular and chaotic orbits of Hamiltonian
systems with different numbers of degrees of freedom. We
also investigated the efficiency of these methods by compar-
ing the CPU times they need for the computation of the
spectrum of LCEs, as well as their ability to accurately re-
produce well-known properties of the LCEs and the GALIs.

The evolution of deviation vectors cannot be separated
from the evolution of the orbit itself because the explicit
expression of the variational equations depends on the solu-
tion of the Hamilton equations of motion. Therefore, any
general-purpose integration scheme for ordinary differential
equations, like the DOP853 integrator we considered in our
study, can be used for the simultaneous integration of the set
of equations which includes both the Hamilton equations of
motion and the variational equations. This method proved to
be very reliable since it reproduced correctly the behavior of
the LCEs and the GALIs for all tested orbits and systems.

When the Hamiltonian function H can be split into two
integrable parts A and B, like H=A+B, symplectic integra-
tors can be used for the integration of the equations of mo-
tion. Symplectic integrators are known to have better perfor-
mance than nonsymplectic ones for the same integration time
step, in terms of accuracy and required CPU time. In order to
investigate the applicability of such methods for the integra-

tion of the variational equations, we focused our study ex-
plicitly on Hamiltonians of the form H=A+B. In particular,
we considered Hamiltonians having a kinetic energy which is
quadratic in the momenta and a potential which depends only
on the positions �Eq. �5��. For such systems the two inte-
grable parts A and B are usually chosen to be the kinetic
energy and the potential, respectively. Most symplectic
schemes require the construction of symplectic maps e�LA

�24� and e�LB �25� for the solution of the integrable parts A
and B. In our study we considered a very efficient symplectic
method, the SB2

c integrator, which has an extra degree of
complexity with respect to most symplectic integrators, since
it requires the explicit solution of an additional corrector
term C �map e�LC �27��.

The variational equations of Hamiltonian �5� can be writ-
ten as the Hamilton equations of motion of the time-
dependent TDH �9�, whose coefficients are defined by the
coordinates of the orbit. Although individually the Hamilton
equations of motion �6� and the variational equations �7� are
equations of motion of Hamiltonian functions, system �41�
which includes together both of them cannot be considered
as the equations of motion of a new generalized Hamil-
tonian, and so symplectic integrators cannot be directly used
for solving it. In our study we applied several approaches
based on symplectic techniques for the integration of the
variational equations. One approach we considered was the
approximation of the solution of the TDH through the
knowledge of the orbit’s coordinates at specific times. These
coordinates can be obtained by any symplectic or nonsym-
plectic integrator, independent of the method we use for ap-
proximating the solution of the variational equations. In our
study we applied the SB2

c integrator for this purpose. First we
assumed the coefficients of the TDH to be constants for each
integration step, and we integrated the resulting quadratic
TDH by the SB2

c integrator �TDHcc method� or solved it ex-
plicitly �TDHes method� whenever this was possible �like,
for example, in the case of the Hénon-Heiles system �54��.
An alternative way we also implemented was to use the SB2

c

integrator for integrating the time-dependent TDH in an ex-
tended phase space �TDHeps method�, using again the
knowledge of orbit’s coordinates at specific times. As an ap-
plication of the TDHeps method we refer to the numerical
study of the FPU problem in �35� where a leap-frog integra-
tor was used for the integration of the time-dependent TDH.

The TDHcc, the TDHes, and the TDHeps methods had a
rather poor numerical performance as they failed in many
cases to determine correctly the regular or chaotic nature of
orbits. Our numerical results show that the computed values
of the LCEs cannot become smaller than a small positive
value, which sets a lower limit to the ability of these tech-
niques to numerically determine very small LCEs. So, one
could wrongly characterize regular orbits as slightly chaotic
because their computed LCEs cannot become smaller than
the above-mentioned limit, although their actual LCEs are
zero. This happens for the regular orbits R1 �Fig. 2� and R2
�Fig. 9�. Of course this limiting value decreases for smaller
integration steps because the numerical schemes approxi-
mate better the real tangent dynamics of the system �Fig.
3�b��. Additionally, one could overestimate the mLCE of
chaotic orbits like, for example, in the case of the chaotic
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FIG. 11. The time evolution of Gk�t�, with k=2,3 ,4 ,5 ,8 �upper
panels� and k=9,11,13,14,16 �lower panels� for the regular orbit
R3 of the 8D Hamiltonian system �56�. The variational equations
are integrated by ��a� and �d�� the DOP853, ��b� and �e�� the TDHeps,
and ��c� and �f�� the TM methods. The step size is �=0.02 for all
methods. For the DOP853 method the parameter �=10−5 is used.
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orbit C2 �Fig. 7�. Nevertheless, these methods always re-
quired less CPU time than the nonsymplectic DOP853 method
for the same time step. Therefore, these schemes can be used
for some rough and fast evaluation of LCEs’ charts, but not
for the detailed investigation of the dynamics or for the ac-
curate computation of the LCEs and GALIs. We note that
among these three techniques the TDHeps method had al-
ways the best numerical performance, although it required a
bit more CPU time than the other two methods.

The use of any symplectic scheme for the integration of
the equations of motion �6� of the ND Hamiltonian �5� cor-
responds to the repeated action of a 2N-dimensional sym-
plectic map S, constructed by the appropriate composition of
maps e�LA �24� and e�LB �25� �and e�LC �27� if the corrector
term C is used�. Then, the tangent dynamics of the flow, i.e.,
the solution of the variational equations �7�, is described by
the tangent map TS=�S /�x� of S �some particular implemen-
tations of this approach for different physical problems can
be found in �36,37��.

The TM method we presented in our study provides a
simple systematic technique to construct the tangent map TS
for any general symplectic integration scheme used for the
integration of the orbit, which is perfectly suited for practical
implementations. According to this method, one has to sub-
stitute the 2N-dimensional maps e�LA �24�, e�LB �25�, and e�LC

�27� needed for the symplectic integration of the equations of
motion �6� by the extended 4N-dimensional maps e�LAV �46�,
e�LBV �47�, e�LCV �53�, respectively. This procedure leads to
the construction of an extended 4N-dimensional final map
composed by the 2N-dimensional maps S and TS. In particu-
lar, the first 2N equations of this map are the equations of
map S, and the rest 2N equations form the tangent map TS.

The TM method and the DOP853 integrator were the only
techniques that succeeded in computing correctly the LCEs
and the GALIs for all studied cases. Among them, the TM
method required less CPU time for the same integration step
size. Another advantage of the TM method over the DOP853

integrator is that its application with larger time steps re-
duces the needed CPU time, keeps the accuracy to acceptable
levels, and produces more reliable results than the DOP853

integrator.
In conclusion, the TM method proved to be the most ef-

ficient one among all tested methods since it required the
least CPU time for the computation of the spectrum of LCEs
and reproduced very accurately the behavior of the LCEs and
GALIs. Therefore, whenever the studied Hamiltonian can be
split into two integrable parts, so that it can be integrated by
symplectic integrators, the TM method should be preferred
over other symplectic or nonsymplectic integration schemes.

Although we considered in our study applications of the
TM method to Hamiltonian systems of relatively low dimen-
sionality �systems having up to eight degrees of freedom�,
the method is expected to be also very efficient for higher-
dimensional systems. Symplectic integrators have already
been applied successfully for the accurate integration of mo-
tion in multidimensional systems which are related, for ex-
ample, to problems of astronomical interest �e.g., �37��, of
molecular dynamics �e.g., �29,38��, and dynamics of nonlin-
ear lattices �e.g., �27��. Using the TM method these symplec-
tic integration schemes can be extended to integrate also the

corresponding variational equations. This is a problem of
great practical importance, which we plan to address in a
future publication.

As a final remark, we note that all the presented methods
require the knowledge of the analytical expression of matrix
DV

2(q��t�) �8� �or of matrix A�t� �4� in the case of a general
dynamical system�. If the variational equations cannot be
written explicitly, possibly due to the complicated form of
the studied dynamical system, the analytical derivation of
these matrices is not possible and their elements could be
estimated numerically, introducing an additional error to the
solution of the variational equations. An approach that could
be followed in such cases is the approximation of the solu-
tion of the variational equations by the difference of two
orbits initially located very close to each other �see �39� for
some particular applications of this approach�. This is the
so-called two-particle method, which was introduced in �14�
and is mainly used for the evaluation of the mLCE. It was
realized almost immediately after the introduction of this
technique that this approach is less efficient and reliable than
the actual integration of the variational equations �33�
�whenever, of course, this integration is possible�. For this
reason we did not include this approach in our study.
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APPENDIX: ANALYTICAL EXPRESSIONS FOR THE
INTEGRATION OF THE HÉNON-HEILES SYSTEM

We present here the explicit expressions of the various
integration schemes for the 2D Hénon-Heiles system, whose
Hamiltonian function �54� is of form �5� with q� = �x ,y� and
p� = �px , py�. The Hamilton equations of motion �6� are

ẋ = px,

ẏ = py ,
�A1�

ṗx = − x − 2xy ,

ṗy = y2 − x2 − y .

The variational equations �7� of the system are

�ẋ = �px,

�ẏ = �py ,
�A2�

�px
˙ = − �1 + 2y��x − 2x�y ,

�py
˙ = − 2x�x + �− 1 + 2y��y ,

while the corresponding TDH �9� takes the form
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HVH��x,�y,�px,�py ;t�

= 1
2 ��px

2 + �py
2� + 1

2 ��1 + 2y�t���x2

+ �1 − 2y�t���y2 + 2�2x�t���x�y� . �A3�

1. Symplectic integration of the equations of motion

The Hénon-Heiles Hamiltonian �54� can be split into two
parts H2=A+B, according to Eq. �23�, with

A = 1
2 �px

2 + py
2� , B = 1

2 �x2 + y2� + x2y − 1
3 y3. �A4�

As it was explained in Sec. V, this separation is convenient
for the application of symplectic schemes for the integration
of Eqs. �A1� since Hamiltonians A and B are integrable. The
maps e�LA �24� and e�LB �25�, which propagate the set of
initial conditions �x ,y , px , py� at time t to their final values
�x� ,y� , px� , py�� at time t+�, are

e�LA:�
x� = x + px�

y� = y + py�

px� = px

py� = py ,
 �A5�

e�LB:�
x� = x

y� = y

px� = px − x�1 + 2y��
py� = py + �y2 − x2 − y�� .

 �A6�

The corrector term �26� is

C = ˆB,�B,A�‰ = �x + 2xy�2 + �x2 − y2 + y�2, �A7�

and the corresponding map e�LC �27� is

e�LC:�
x� = x

y� = y

px� = px − 2x�1 + 2x2 + 6y + 2y2��
py� = py − 2�y − 3y2 + 2y3 + 3x2 + 2x2y�� .

 �A8�

2. Integration of the variational equations

We derive now for the particular case of the Hénon-Heiles
system the analytical expressions of the various numerical
schemes presented in Sec. VI for the integration of the varia-
tional equations.

a. Diagonal form of the TDH (A3) with constant coeffi-
cients. Inserting the values x�ti��xi and y�ti��yi at a spe-
cific time ti in the functional form of the TDH �A3�, HVH
becomes a quadratic 2D Hamiltonian with constant coeffi-
cients. The equations of motion of this Hamiltonian are
solved immediately if xi=0. For xi�0 the transformation

��x

�y
� = T��X

�Y
�, ��px

�py
� = T��PX

�PY
� , �A9�

with

T = 	
�xi

2 + yi
2 + yi

�xi
2 + yi

2

�2�xi
2 + yi

2

− xi

�2�xi
2 + yi

2 + yi
�xi

2 + yi
2

xi
�xi

2 + yi
2 + yi

�xi
2 + yi

2

�2�xi
2 + yi

2��xi
2 + yi

2 + yi�

�xi
2 + yi

2 + yi

�2�xi
2 + yi

2 + yi
�xi

2 + yi
2

 ,

�A10�

gives HVH��x ,�y ,�px ,�py ; ti� the diagonal form

HVHD��X,�Y,�Px,�Py� = 1
2 ��Px

2 + �Py
2�

+ 1
2 ��1 + 2�xi

2 + yi
2��X2

+ �1 − 2�xi
2 + yi

2��Y2� .

�A11�

The columns of matrix T are the eigenvectors of matrix

DV
2
„q��ti�… � DB

2�xi,yi� = �1 + 2yi 2xi

2xi 1 − 2yi
� , �A12�

and �1,2=1�2�xi
2+yi

2 are the corresponding eigenvalues.
b. Symplectic integration of the TDH (A3) in an extended

phase space. Considering the TDH �A3� as a time-dependent
Hamiltonian, we can transform it to a time-independent one
having time t as an additional generalized position by the
procedure presented in Sec. VI B 2. The 3D Hamiltonian
�32� takes the form

H̃VH��x,�y,t,�px,�py,pt�

= 1
2 ��px

2 + �py
2� + pt + 1

2 ��1 + 2y�t���x2 + �1 − 2y�t���y2

+ 2�2x�t���x�y� , �A13�

with pt being the conjugate momentum of coordinate t. H̃VH
can be split into two integrable parts �33�:

Ã��px,�py,pt� = 1
2 ��px

2 + �py
2� + pt,

�A14�
B̃��x,�y,t� = 1

2 ��1 + 2y�t���x2 + �1 − 2y�t���y2

+ 2�2x�t���x�y� ,

so that its equations of motion can be integrated by any
symplectic integration method in order to obtain the time
evolution of variations �x, �y, �px, and �py. The maps e�LÃ

�34� and e�LB̃ �35� �neglecting the equations for pt� are

e�LÃ:�
�x� = �x + �px�

�y� = �y + �py�

t� = t + �

�px� = �px

�py� = �py ,
 �A15�

NUMERICAL INTEGRATION OF VARIATIONAL EQUATIONS PHYSICAL REVIEW E 82, 036704 �2010�

036704-17



e�LB̃:�
�x� = �x

�y� = �y

t� = t

�px� = �px − ��1 + 2y�t���x + 2x�t��y��
�py� = �py + �− 2x�t��x + �− 1 + 2y�t���y�� .


�A16�

The corrector term C̃ �36� is

C̃ = ��x + 2x�t��y + 2y�t��x�2 + ��y + 2x�t��x − 2y�t��y�2,

�A17�

and the corresponding map e�LC̃ �37� is

e�LC̃:�
�x� = �x

�y� = �y

t� = t

�px� = �px − 2�4x�t��y + �4x2�t� + �1 + 2y�t��2��x��
�py� = �py − 2�4x�t��x + �4x2�t� + �1 − 2y�t��2��y�� .


�A18�

c. Tangent map method. According to the TM method
presented in Sec. VI C Eqs. �A1� and �A2� form a set of
equations which defines the act of the differential operator
LHV on vector u� = �x ,y , px , py ,�x ,�y ,�px ,�py� �Eqs. �41��.
This set of equations is split into two integrable sets

�
ẋ = px

ẏ = py

ṗx = 0

ṗy = 0

�ẋ = �px

�ẏ = �py

�px
˙ = 0

�py
˙ = 0

⇒
du�

dt
= LAVu� , �A19�

�
ẋ = 0

ẏ = 0

ṗx = − x − 2xy

ṗy = y2 − x2 − y

�ẋ = 0

�ẏ = 0

�px
˙ = − �1 + 2y��x − 2x�y

�py
˙ = − 2x�x + �− 1 + 2y��y

⇒
du�

dt
= LBVu� ,

�A20�

which define the act of operators LAV �44� and LBV �45�,
respectively. Then, maps e�LAV �46� and e�LAV �47� are

e�LAV:�
x� = x + px�

y� = y + py�

px� = px

py� = py

�x� = �x + �px�

�y� = �y + �py�

�px� = �px

�py� = �py ,

 �A21�

e�LBV:�
x� = x

y� = y

px� = px − x�1 + 2y��
py� = py + �y2 − x2 − y��
�x� = �x

�y� = �y

�px� = �px − ��1 + 2y��x + 2x�y��
�py� = �py + �− 2x�x + �− 1 + 2y��y�� ,


�A22�

while the map e�LCV �53� of the corrector function C �A7� is

e�LCV:�
x� = x

y� = y

px� = px − 2x�1 + 2x2 + 6y + 2y2��
py� = py − 2�y − 3y2 + 2y3 + 3x2 + 2x2y��
�x� = �x

�y� = �y

�px� = �px − 2��1 + 6x2 + 2y2 + 6y��x + 2x�3 + 2y��y��
�py� = �py − 2�2x�3 + 2y��x + �1 + 2x2 + 6y2 − 6y��y�� .

 �A23�

CH. SKOKOS AND E. GERLACH PHYSICAL REVIEW E 82, 036704 �2010�

036704-18



�1� E. Hairer, S. P. Nørsett, and G. Wanner, Solving Ordinary Dif-
ferential Equations: Nonstiff Problems, Springer Series in
Computational Mathematics Vol. 8, 2nd ed. �Springer, New
York, 1993�.

�2� E. Hairer, C. Lubich, and G. Wanner, Geometric Numerical
Integration: Structure-Preserving Algorithms for Ordinary Dif-
ferential Equations, Springer Series in Computational Math-
ematics Vol. 31 �Springer, New York, 2002�.

�3� R. I. McLachlan and G. R. W. Quispel, J. Phys. A 39, 5251
�2006�; É. Forest, ibid. 39, 5321 �2006�.

�4� Ch. Skokos, Lect. Notes Phys. 790, 63 �2010�.
�5� J. Laskar, Physica D 67, 257 �1993�; Hamiltonian Systems

with Three or More Degrees of Freedom, edited by C. Simó
�Kluwer Academic Publishers, Dordrecht, 1999�, p. 134.

�6� C. Froeschlé, E. Lega, and R. Gonczi, Celest. Mech. Dyn.
Astron. 67, 41 �1997�; C. Froeschlé, R. Gonczi, and E. Lega,
Planet. Space Sci. 45, 881 �1997�.

�7� R. Barrio, Chaos, Solitons Fractals 25, 711 �2005�; Int. J. Bi-
furcation Chaos 16, 2777 �2006�.

�8� Ch. Skokos, J. Phys. A 34, 10029 �2001�; Ch. Skokos, Ch.
Antonopoulos, T. C. Bountis, and M. N. Vrahatis, Prog. Theor.
Phys. Suppl. 150, 439 �2003�; J. Phys. A 37, 6269 �2004�.

�9� Ch. Skokos, T. C. Bountis, and Ch. Antonopoulos, Physica D
231, 30 �2007�.

�10� Ch. Skokos, T. C. Bountis, and Ch. Antonopoulos, Eur. Phys.
J. Spec. Top. 165, 5 �2008�.

�11� P. M. Cincotta and C. Simó, Astron. Astrophys. Suppl. Ser.
147, 205 �2000�; P. M. Cincotta, C. M. Giordano, and C.
Simó, Physica D 182, 151 �2003�.

�12� A. M. Lyapunov, The General Problem of the Stability of Mo-
tion �Taylor & Francis, London, 1992�; English translation
from French: A. Liapounoff, Ann. Fac. Sci. Toulouse Math. 9,
203 �1907�; the French text was reprinted in Annals of Math-
ematics Studies �Princeton University Press, Princeton, NJ,
1947�, Vol. 17, and the original was published in Russian by
the Mathematical Society of Kharkov in 1892.

�13� V. I. Oseledec, Trans. Mosc. Math. Soc. 19, 197 �1968�.
�14� G. Benettin, L. Galgani, and J.-M. Strelcyn, Phys. Rev. A 14,

2338 �1976�.
�15� Y. B. Pesin, Russ. Math. Surveys 32, 55 �1977�.
�16� G. Benettin, L. Galgani, A. Giorgilli, and J.-M. Strelcyn, Mec-

canica 15, 9 �1980�.
�17� G. Benettin, L. Galgani, A. Giorgilli, and J.-M. Strelcyn, Mec-

canica 15, 21 �1980�.
�18� G. Benettin, L. Galgani, A. Giorgilli, and J.-M. Strelcyn, C.R.

Seances Acad. Sci., Ser. A 286, 431 �1978�.
�19� W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flan-

nery, Numerical Recipes in FORTRAN: The Art of Scientific
Computing, 2nd ed. �Cambridge University Press, Cambridge,
England, 1992�.

�20� T. Manos, Ch. Skokos, and T. Bountis, in Proceedings of the
CCT 07, edited by C. Chandre, X. Leoncini, and G. Zaslavsky
�World Scientific, Singapore, 2008�, p. 356; D. D. Carpintero,
Mon. Not. R. Astron. Soc. 388, 1293 �2008�; T. Manos, Ch.
Skokos, and T. Bountis, in Astrophysics and Space Science

Proceedings, edited by G. Contopoulos and P. A. Patsis
�Springer-Verlag, Berlin, 2009�, p. 367; T. Bountis, T. Manos,
and H. Christodoulidi, J. Comput. Appl. Math. 227, 17 �2009�;
Ch. Antonopoulos, V. Basios, and T. Bountis, Phys. Rev. E 81,
016211 �2010�.

�21� J. Laskar and P. Robutel, Celest. Mech. Dyn. Astron. 80, 39
�2001�.

�22� Note that in �21� the Poisson bracket �19� is defined with op-
posite signs.

�23� P. J. Channell and C. Scovel, Nonlinearity 3, 231 �1990�; É.
Forest and R. D. Ruth, Physica D 43, 105 �1990�; H. Yoshida,
Phys. Lett. A 150, 262 �1990�; J. Candy and W. Rozmus, J.
Comput. Phys. 92, 230 �1991�; R. I. McLachlan and P. Atela,
Nonlinearity 5, 541 �1992�; H. Yoshida, Celest. Mech. Dyn.
Astron. 56, 27 �1993�; I. P. Omelyan, I. M. Mryglod, and R.
Folk, Phys. Rev. E 65, 056706 �2002�.

�24� R. I. McLachlan, BIT 35, 258 �1995�.
�25� In �21� this commutator is denoted as C={�A ,B� ,B} due to the

different definition of the Poisson bracket �19� used.
�26� L. Nadolski, Ph.D. thesis, University of Paris XI, 2001; L.

Nadolski and J. Laskar, Proceedings of the European Particle
Accelerator Conference 2002 �EPAC02� �unpublished�, p.
1276; Ch. Skokos and Y. Papaphilippou, Proceedings of the
European Particle Accelerator Conference 2008 �EPAC08�
�unpublished�, p. 682.

�27� S. Flach, D. O. Krimer, and Ch. Skokos, Phys. Rev. Lett. 102,
024101 �2009�; Ch. Skokos, D. O. Krimer, S. Komineas, and
S. Flach, Phys. Rev. E 79, 056211 �2009�; Ch. Skokos and S.
Flach, ibid. 82, 016208 �2010�; T. V. Laptyeva, J. D. Bodyfelt,
D. O. Krimer, Ch. Skokos, and S. Flach, EPL 91, 30001
�2010�.

�28� S. A. Chin, Phys. Lett. A 226, 344 �1997�.
�29� I. P. Omelyan, I. M. Mryglod, and R. Folk, Phys. Rev. E 66,

026701 �2002�; Comput. Phys. Commun. 151, 272 �2003�.
�30� Freely available at http://www.unige.ch/~hairer/software.html
�31� A. J. Lichtenberg and M. A. Lieberman, Regular and Chaotic

Dynamics, 2nd ed. �Springer, Berlin, 1992�.
�32� M. Hénon and C. Heiles, Astron. J. 69, 73 �1964�.
�33� G. Contopoulos, L. Galgani, and A. Giorgilli, Phys. Rev. A 18,

1183 �1978�.
�34� E. Fermi, J. Pasta, and S. Ulam, Los Alamos National Labo-

ratory Report No. LA-1940, 1955 �unpublished�; G. P. Berman
and F. M. Izrailev, Chaos 15, 015104 �2005�.

�35� S. Paleari and T. Penati, Lect. Notes Phys. 728, 239 �2008�.
�36� V. Latora, A. Rapisarda, and S. Ruffo, Phys. Rev. Lett. 80, 692

�1998�; A.-S. Libert, C. Hubaux, and T. Carletti, e-print
arXiv:1005.5611.

�37� S. Mikkola and K. Innanen, Celest. Mech. Dyn. Astron. 74, 59
�1999�; M. Guzzo, Icarus 174, 273 �2005�.

�38� S. K. Gray, D. W. Noid, and B. G. Sumpter, J. Chem. Phys.
101, 4062 �1994�.

�39� G. Tancredi, A. Sánchez, and F. Roig, Astron. J. 121, 1171
�2001�; X. Wu and T.-Y. Huang, Phys. Lett. A 313, 77 �2003�;
X. Wu, T.-Y. Huang, and H. Zhang, Phys. Rev. D 74, 083001
�2006�.

NUMERICAL INTEGRATION OF VARIATIONAL EQUATIONS PHYSICAL REVIEW E 82, 036704 �2010�

036704-19

http://dx.doi.org/10.1088/0305-4470/39/19/S01
http://dx.doi.org/10.1088/0305-4470/39/19/S01
http://dx.doi.org/10.1088/0305-4470/39/19/S03
http://dx.doi.org/10.1007/978-3-642-04458-8_2
http://dx.doi.org/10.1016/0167-2789(93)90210-R
http://dx.doi.org/10.1023/A:1008276418601
http://dx.doi.org/10.1023/A:1008276418601
http://dx.doi.org/10.1016/S0032-0633(97)00058-5
http://dx.doi.org/10.1016/j.chaos.2004.11.092
http://dx.doi.org/10.1142/S021812740601646X
http://dx.doi.org/10.1142/S021812740601646X
http://dx.doi.org/10.1088/0305-4470/34/47/309
http://dx.doi.org/10.1143/PTPS.150.439
http://dx.doi.org/10.1143/PTPS.150.439
http://dx.doi.org/10.1088/0305-4470/37/24/006
http://dx.doi.org/10.1016/j.physd.2007.04.004
http://dx.doi.org/10.1016/j.physd.2007.04.004
http://dx.doi.org/10.1140/epjst/e2008-00844-2
http://dx.doi.org/10.1140/epjst/e2008-00844-2
http://dx.doi.org/10.1051/aas:2000108
http://dx.doi.org/10.1051/aas:2000108
http://dx.doi.org/10.1016/S0167-2789(03)00103-9
http://dx.doi.org/10.1103/PhysRevA.14.2338
http://dx.doi.org/10.1103/PhysRevA.14.2338
http://dx.doi.org/10.1070/RM1977v032n04ABEH001639
http://dx.doi.org/10.1007/BF02128236
http://dx.doi.org/10.1007/BF02128236
http://dx.doi.org/10.1007/BF02128237
http://dx.doi.org/10.1007/BF02128237
http://dx.doi.org/10.1016/j.cam.2008.07.034
http://dx.doi.org/10.1103/PhysRevE.81.016211
http://dx.doi.org/10.1103/PhysRevE.81.016211
http://dx.doi.org/10.1023/A:1012098603882
http://dx.doi.org/10.1023/A:1012098603882
http://dx.doi.org/10.1088/0951-7715/3/2/001
http://dx.doi.org/10.1016/0167-2789(90)90019-L
http://dx.doi.org/10.1016/0375-9601(90)90092-3
http://dx.doi.org/10.1016/0021-9991(91)90299-Z
http://dx.doi.org/10.1016/0021-9991(91)90299-Z
http://dx.doi.org/10.1088/0951-7715/5/2/011
http://dx.doi.org/10.1007/BF00699717
http://dx.doi.org/10.1007/BF00699717
http://dx.doi.org/10.1103/PhysRevE.65.056706
http://dx.doi.org/10.1007/BF01737165
http://dx.doi.org/10.1103/PhysRevLett.102.024101
http://dx.doi.org/10.1103/PhysRevLett.102.024101
http://dx.doi.org/10.1103/PhysRevE.79.056211
http://dx.doi.org/10.1103/PhysRevE.82.016208
http://dx.doi.org/10.1209/0295-5075/91/30001
http://dx.doi.org/10.1209/0295-5075/91/30001
http://dx.doi.org/10.1016/S0375-9601(97)00003-0
http://dx.doi.org/10.1103/PhysRevE.66.026701
http://dx.doi.org/10.1103/PhysRevE.66.026701
http://dx.doi.org/10.1016/S0010-4655(02)00754-3
http://www.unige.ch/~hairer/software.html
http://dx.doi.org/10.1086/109234
http://dx.doi.org/10.1103/PhysRevA.18.1183
http://dx.doi.org/10.1103/PhysRevA.18.1183
http://dx.doi.org/10.1063/1.1855036
http://dx.doi.org/10.1007/978-3-540-72995-2_7
http://dx.doi.org/10.1103/PhysRevLett.80.692
http://dx.doi.org/10.1103/PhysRevLett.80.692
http://arXiv.org/abs/arXiv:1005.5611
http://dx.doi.org/10.1023/A:1008312912468
http://dx.doi.org/10.1023/A:1008312912468
http://dx.doi.org/10.1016/j.icarus.2004.10.015
http://dx.doi.org/10.1063/1.467523
http://dx.doi.org/10.1063/1.467523
http://dx.doi.org/10.1086/318732
http://dx.doi.org/10.1086/318732
http://dx.doi.org/10.1016/S0375-9601(03)00720-5
http://dx.doi.org/10.1103/PhysRevD.74.083001
http://dx.doi.org/10.1103/PhysRevD.74.083001

